70 1 4

CRCS Schama

			a contains $K_{\mathbb{S}}$	
USN	1			15MR43
		Fourth Semester B.E. Deg	gree Examination, June	e/July 2018
		Applied T	hermodynamics	
Time: 3 hrs.		3 hrs.		Max. Marks: 80
	N	ote: 1. Answer any FIVE full question 2. Use of thermodynamic data		from each module.
1	a.	Define the following	Module-1	
		i) Stochiometric air	ii) Enthalpy of combustion	
		iii) Adiabatic flame temperature	iv) Excess air	(08 Marks)
	b.	With a near sketch explain ORSAT a	apparatus.	(08 Marks)

Module-2

OR

Butane (C₄H₁₀) is burned with air and volumetric analysis of combustion of products and dry basis yields following constituents $CO_2 = 7.8\%$, CO = 1.1%, $O_2 = 8.2\%$, $N_2 \neq 82.9\%$.

Derive the equation for minimum air required for complete combustion.

- What are the methods to find friction power? Explain Morse test method, a.
 - The following readings were taken during the test of a single cylinder four stroke old engine.

Cylinder dia = 250 mm

Stroke = 400 mm

Gross MEP = 7 bar

Pumping MEP = 0.5 bar

Speed = 250 rpm

Net load on the brake = 1080 N

Effective diameter of the brake = 1.5 m

Determine: i) % theoretical air, ii) % excess air.

 $M_f = 10 \text{ kg/hr}$

Calorific value = 44300 kJ/kg

Calculate:

- i) IP
- ii) BP
- iii) Mechanical efficiency
- iv) Indicated thermal efficiency
- v) Brake thermal efficiency

(10 Marks)

AQMarks)

OR

OR

Derive an expression for work done in a single stage compressor neglecting clearance.

- A single cylinder single acting air compressor compresses 0.7 kg/min of air according to PV^{1.3} = C from 1 bar, 25°C to 7 bar while running at 600 rpm. The clearance volume is 1/25th of stroke volume which is 1.2 ltrs. The mechanical efficiency is 81%. Calculate:
 - i) Volumetric efficiency
 - (ii) Actual power required to drive the compressor.

(08 Marks)

15MR43

Module-3

5 a. Explain regenerative steam cycle with open feed water heater.

(08 Marks)

b. Discuss the effects of boiler pressure and super heat on the Rankine cycle.

(08 Marks)

OR

6 a. Derive the expression for thermal efficiency of otto cycle with the help of PV and T-S diagrams. (06 Marks)

- b. In an air standard diesel cycle. The compression ratio is 16. At the beginning of isentropic compression, the temperature is 15°C and pressure is 0.1 MPa. Heat is added until the temperature at the end of the constant pressure process is 1480°C. Calculate:
 - i) Cut off ratio
- ii) Heat supplied per kg of air
- iii) Cycle efficiency
- iv) Mean effective pressure

(10 Marks)

Module-4

- 7 a. What are the methods to improve efficiency of gas turbine? Explain regenerative method.
 - b. Derive an expression for max pressure ratio (r_p) and optimum pressure ratio $(r_{p_{opt}})$ for an Brayton cycle with the help of PV and TS diagram. Write the assumptions. (10 Marks)

OR

a. With a neat sketch, explain Ramjet engine.

े(06 Marks)

b. In a gas turbine plant air is compressed from 98.1 kPa and 15°C through a pressure ratio of 4:1. It is then heated to 650°C in a combustion chamber and expanded back to the atmospheric pressure efficiencies of turbine and compressor are 85% and 80% respectively. Calculate: (i) Cycle efficiency, (ii) Work ratio. (10 Marks)

Module-5

9 a. What are desirable properties of refrigerants? Explain briefly

(06 Marks)

- b. A vapour compression refrigerator working with Freon 12 has its temperature range -10°C and 30°C. The vapour enters the compressor on dry saturated and under cooled by 5°C in the condenser. For a capacity of 15 TR (Ton of refrigeration). Find: (i) COP, (ii) Mass of Freon, (iii) Power required where $C_{pv} = 0.56 \, \text{kJ/kgK}$, $C_{P_{big}} = 1.003 \, \text{kJ/kgK}$. (10 Marks)
- 10 a. Define:
 - i) Specific humidity
 - ii) Saturated air
 - iii) Relative humidity

iv) Wet bulb temperature.

(08 Marks)

b. Moist air at 35°C has a dew point of 15°C. Calculate its relative humidity, specific humidity and enthalpy (h). Take $Cp_v = 1.88 \text{ kJ/kg}$. (08 Marks)

* * * * *